tic s ] 2 5 Ju l 2 01 2 Optimal light harvesting structures at optical and infrared frequencies
نویسنده
چکیده
One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules take advantage of the hybridization of Fabry-Perot modes in the slit and surface modes of the corrugated metal surface. Same design rules apply for optical and infrared frequencies. The parameter space of the groove array is also examined with a conjugate gradient optimization algorithm that used as a seed the geometries optimized following physical intuition. Both uniform and nonuniform groove arrays are considered. The largest transmission enhancement, with respect to a uniform array, is obtained for a chirped groove profile. Such enhancement is a function of the wavelength. It decreases from 39 % in the optical part of the spectrum to 15 % at the long wavelength infrared. © 2012 Optical Society of America OCIS codes: (050.1220) Apertures; (240.6680) Surface plasmons; (240.6690) Surface waves; (050.2770) Gratings; (050.1960) Diffraction theory; (050.6624) Subwavelength structures. References and links 1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London) 445, 39–46 (2007). 2. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). 3. J. B. Pendry, L. Martı́n-Moreno, and F. J. Garcı́a-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004). 4. T. Thio, K. M. Pellegrin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). 5. F. J. Garcı́a-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martı́n-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). 6. T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. of Appl. Phys. 44, L170–L172 (2005). 7. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. Garcı́aVidal, L. Martı́n-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95, 011113 (2009). 8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellegrin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002). 9. A. Degiron and T. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12, 3694–3700 (2004). 10. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “Giant optical transmission of a subwavelength slit optimized using the magnetic field phase,” Phys. Rev. Lett. 99, 043902 (2007). 11. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved lengths,” Appl. Phys. Lett. 91, 093111 (2007). 12. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an ag-sio2 interface,” J. Opt. Soc. Am. B 24, 2268–2272 (2007). 13. Z. Li, H. Caglayan, E. Colak, and E. Ozbay, “Enhanced transmission and directivity from metallic subwavelength apertures with nonuniform and nonperiodic grooves,” Appl. Phys. Lett. 92, 011128 (2008). 14. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photonics 2, 161–164 (2008). 15. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “,” Opt. Expresss 19, 10429–10442 (2011). 16. W. Suetaka, Surface Infrared and Raman Spectroscopy Methods and Applications (Kluwer Academic Publishers, 1995). 17. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and J. K. R. Rodrigues, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Ann. Rev. Phys. Chem. 59, 179–202 (2008). 18. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves,” Opt. Express 19, 24530–24539 (2011). 19. K. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidthoptimized nanohole array transmittance,” Opt. Lett. 31, 1528–1530 (2006). 20. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, and J. H. Connor, “Seeing protein monolayers with naked eye through plasmonic fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108, 11784–11789 (2011). 21. R. Stanley, “Plasmonics in the mid-infrared,” Nature Photonics 6, 409–411 (2012). 22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77 (Cambridge University Press, New York, 1986), 2nd ed. 23. J. D. Jackson, Classical electrodynamics (John Wiley, New York, 1999), 3rd ed. 24. F. López-Tejeira, S. G. Rodrigo, L. Martı́n-Moreno, F. J. Garcı́a-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007). 25. F. López-Tejeira, S. G. Rodrigo, L. Martı́n-Moreno, F. J. Garcı́a-Vidal, E. Devaux, J. Dintinger, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Modulation of surface plasmon coupling-in by one-dimensional surface corrugation,” New J. Phys. 10, 033035 (2008). 26. K. Ishihara, G. Hatakoshi, T. Ikari, H. Minamide, H. Ito, and K. Ohashi, “Terahertz wave enhanced transmission through a single subwavelength aperture with periodic surface structures,” Jpn. J. of Appl. Phys. 44, L1005– L1007 (2005). 27. K. Ishihara, K. Ohashi, T. Ikari, H. Minamide, H. Yokoyama, J.-I. Shikata, and H. Ito, “Therahertz-wave nearfield imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture,” Appl. Phys. Lett. 89, 201120 (2006). 28. D. Lin, C. Chang, Y. Chen, D. Yang, M. Lin, J. Yeh, J. Liu, C. Kuan, C. Yeh, and C. Lee, “Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,” Opt. Express 14, 3503–3511 (2006). 29. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). 30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985). 31. J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941). 32. F. López-Tejeira, F. J. Garcı́a-Vidal, and L. Martı́n-Moreno, “Normal-incidence scattering of surface plasmon polaritons by one-dimensional nanoindentations: a multimodal description,” Appl. Phys. A 89, 251–258 (2007). 33. F. de León-Pérez, G. Brucoli, F. J. Garcı́a-Vidal, and L. Martı́n-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New J. Phys. 10, 105017 (2008). 34. F. López-Tejeira, F. J. Garcı́a-Vidal, and L. Martı́n-Moreno, “Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces,” Phys. Rev. B 72, 161405(R) (2005). 35. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980). 36. F. de León-Pérez, F. J. Garcı́a-Vidal, and L. Martı́n-Moreno, “Role of surface plasmon polaritons in the optical response of a hole pair,” Phys. Rev. B 84, 125414 (2011).
منابع مشابه
tic s ] 2 6 A pr 2 01 5 Light propagation and emission in complex photonic media
We provide an introduction to complex photonic media, that is, composite materials with spatial inhomogeneities that are distributed over length scales comparable to or smaller than the wavelength of light. This blossoming field is firmly rooted in condensed matter physics, in optics, and in materials science. Many stimulating analogies exist with other wave phenomena such as sound and seismolo...
متن کاملOptimal light harvesting structures at optical and infrared frequencies.
One-dimensional light harvesting structures with a realistic geometry nano-patterned on an opaque metallic film are optimized to render high transmission efficiencies at optical and infrared frequencies. Simple design rules are developed for the particular case of a slit-groove array with a given number of grooves that are symmetrically distributed with respect to a central slit. These rules ta...
متن کاملModelling optical micro-machines
X iv :p hy si cs /0 60 72 86 v1 [ ph ys ic s. op tic s] 3 0 Ju l 2 00 6 Preprint of: Vincent L. Y. Loke, Timo A. Nieminen, Agata M. Brańczyk, Norman R. Heckenberg and Halina Rubinsztein-Dunlop “Modelling optical micro-machines” pp. 163–166 in Nikolai Voshchinnikov (ed.) 9th International Conference on Electromagnetic and Light S cattering by Non-Spherical Particles: Theory, Measurements, and Ap...
متن کاملtic s ] 2 2 Ju l 2 01 1 Offset frequency dynamics and phase noise properties of a self - referenced 10 GHz Ti : sapphire frequency comb
This paper shows the experimental details of the stabilization scheme that allows full control of the repetition rate and the carrier-envelope offset frequency of a 10 GHz frequency comb based on a femtosecond Ti:sapphire laser. Octave-spanning spectra are produced in nonlinear microstructured optical fiber, in spite of the reduced peak power associated with the 10 GHz repetition rate. Improved...
متن کاملMetallic nanorings for broadband, enhanced extraction of light from solid-state emitters
X iv :1 70 4. 07 64 0v 1 [ ph ys ic s. op tic s] 2 5 A pr 2 01 7 Metallic nanorings for broadband, enhanced extraction of light from solid-state emitters Oliver J. Trojak, a) Suk In Park, Jin Dong Song, and Luca Sapienza b) Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom Center for Opto-Electronic Materials and Devices Research, Korea Instit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012